$\mathbb{N} = \mathbb{S} =$

International Workshop On Mathematical Issues In Information Sciences 数据科学国际研讨会

17th-18th, Dec. 2022

Adversarial Machine Learning: Adversarial examples and backdoor learning

Secure Computing Lab of Big Data

Sample-Specific Backdoor Attack^[1]

Background

Attackers intend to inject hidden backdoors into DNNs, such that the attacked model performs well on benign samples, whereas its prediction will be maliciously changed if hidden backdoors are activated by the attacker-defined trigger.

Sample-agnostic backdoor attack

• Different poisoned samples contain the same trigger, resulting in that the attacks could be easily mitigated by current backdoor defenses.

Sample-specific backdoor attack

• Backdoor triggers are sample-specific invisible additive noises generated by encoding an attacker-specified string into benign images through an encoder-decoder network.

Method

Sensitivity of poisoned samples

• Given a backdoored model g_{θ} trained on \overline{D}_{train} with $f_{\theta_{\theta}}(\cdot)$ indicating its feature extractor, and a set of transformations τ (e.g., rotation, scaling, will be specified in experiments), for any sample x (poisoned or clean), the FCT metric is formulated as follows:

$$\Delta_{trans}\left(\boldsymbol{x};\tau,f_{\boldsymbol{\theta}_{\boldsymbol{\theta}}}\right) = \left\|f_{\boldsymbol{\theta}_{\boldsymbol{\theta}}}(\boldsymbol{x}) - f_{\boldsymbol{\theta}_{\boldsymbol{\theta}}}(\tau(\boldsymbol{x}))\right\|_{2}^{2}$$
(1)

Utilizing FCT, we develop a sample-distinguishment (SD) module. we firstly train a backdoored model g_{θ} based on \overline{D}_{train} using the standard supervised learning algorithm with a few epochs. Then, we calculate $\Delta_{trans}(x_i)$, all $x_i \in \overline{D}_{train}$ and plot the histogram.

- Learning feature extractor via semi-supervised contrastive learning (SS-CTL).
 - ∇ ((1)) (2))

Method

The Main Process of Backdoor Attacks

• Let $D_{train} = \{x_i, y_i\}_{i=1}^N$ indicates the benign training set containing $N_{i.i.d.}$ samples, where $x_i \in X = \{0, ..., 255\}^{C \times W \times H}$ and $y_i \in Y = \{1, ..., K\}$. The classification learns a function $f_w: X \to X$ $[0,1]^K$ with parameters w. Let y_t denotes the target label ($y_t \in Y$). The core of backdoor attacks is how to generate the poisoned training set D_p . Specifically, D_p consists of modified version of a subset of D_{train} (i.e., D_m) and remaining benign samples D_b .

$$D_p = D_b \cup D_m \tag{1}$$

• Once the poisoned training set D_p is generated based on the aforementioned method, backdoor attackers will send it to the user. Users will adopt it to train DNNs with the standard training process, i.e.,

$$\min_{\mathbf{w}} \frac{1}{N} \sum_{(\mathbf{x}, \mathbf{y}) \in \mathcal{D}_p} \mathcal{L}(f_{\mathbf{w}}(\mathbf{x}), \mathbf{y})$$
(2)

■ How to Generate Sample-specific Triggers

• To use a pre-trained encoder-decoder network as an example to generate sample-specific triggers. The encoder takes a benign image and the representative string to generate the poisoned image.

Experimental Evaluation

$Dataset \rightarrow$	ImageNet				MS-Celeb-1M			
Aspect \rightarrow	Effectiveness (%)		Stealthiness		Effectiveness (%)		Stealthiness	
Attack ↓	BA	ASR	PSNR	ℓ^∞	BA	ASR	PSNR	ℓ^∞
Standard Training	85.8	0.0			97.3	0.1		_
BadNets [8]	85.9	99.7	25.635	235.583	<u>96.0</u>	100	25.562	229.675
Blended Attack [3]	85.1	95.8	45.809	23.392	95.7	<u>99.1</u>	45.726	23.442
Ours	<u>85.5</u>	<u>99.5</u>	<u>27.195</u>	<u>83.198</u>	96.5	100	<u>28.659</u>	<u>91.071</u>

$$\mathcal{L}_{SS-CTL}(\boldsymbol{\theta}_{e}; \overline{D}_{train}) = \sum_{(\boldsymbol{x}_{i}, y_{i}) \in \widehat{D}_{p} \cup \widehat{D}_{u}} \ell_{CTL} \left(f_{\boldsymbol{\theta}_{e}} \left(\widetilde{\boldsymbol{x}}_{i}^{(1)} \right), f_{\boldsymbol{\theta}_{e}} \left(\widetilde{\boldsymbol{x}}_{i}^{(2)} \right) \right)$$

$$+ \sum_{\{(\boldsymbol{x}_{i}, y_{i}), (\boldsymbol{x}_{j}, y_{j})\} \subset \widehat{D}_{c}} \ell_{S-CTL} \left(f_{\boldsymbol{\theta}_{e}} \left(\widetilde{\boldsymbol{x}}_{i}^{(1)} \right), f_{\boldsymbol{\theta}_{e}} \left(\widetilde{\boldsymbol{x}}_{i}^{(2)} \right), f_{\boldsymbol{\theta}_{e}} \left(\widetilde{\boldsymbol{x}}_{j}^{(1)} \right), f_{\boldsymbol{\theta}_{e}} \left(\widetilde{\boldsymbol{x}}_{j}^{(2)} \right); y_{i}, y_{j} \right)$$

$$L \text{ corning classifier via minimizing the mixed cross entropy loss.}$$

Learning classifier via minimizing the mixed cross-entropy loss

$$\mathcal{L}_{MCE}(\boldsymbol{\theta}_{c}; \widehat{D}_{c}, \widehat{D}_{p})$$

$$= \frac{-1}{|\widehat{D}_{c}|} \sum_{(\boldsymbol{x}, \boldsymbol{y}) \in \widehat{D}_{c}} \log[h_{\boldsymbol{\theta}_{c}}(f_{\boldsymbol{\theta}_{e}}(\boldsymbol{x}))]_{\boldsymbol{y}} + \frac{\lambda_{p}}{|\widehat{D}_{p}|} \cdot \sum_{(\boldsymbol{x}, \boldsymbol{y}) \in \widehat{D}_{p}} \log[h_{\boldsymbol{\theta}_{c}}(f_{\boldsymbol{\theta}_{e}}(\boldsymbol{x}))]_{\boldsymbol{y}}$$

$$(3)$$

- Backdoor removal
 - Unlearning

$$\mathcal{L}_{unlearn}\left(\boldsymbol{\theta}; \widehat{D}_{p}\right) = \frac{1}{\left|\widehat{D}_{p}\right|} \sum_{(\boldsymbol{x}, \boldsymbol{y}) \in \widehat{D}_{p}} \log[g_{\boldsymbol{\theta}}(\boldsymbol{x})]_{\boldsymbol{y}}$$
(4)

• Relearning

$$\mathcal{L}_{relearn}\left(\boldsymbol{\theta}; \widehat{D}_{c}\right) = \frac{1}{\left|\widehat{D}_{c}\right|} \sum_{(\boldsymbol{x}, \boldsymbol{y}) \in \widehat{D}_{c}} -\log[g_{\boldsymbol{\theta}}(\boldsymbol{x})]_{\boldsymbol{y}} \qquad (5)$$

Experimental Evaluation

Detect	Defense \rightarrow	Baseline1		Baseline2		DBD		D-ST	
Dataset \downarrow	Attack ↓	ACC	ASR	ACC	ASR	ACC	ASR	ACC	ASR
	BN-all2one	83.54	2.60	91.32	99.91	92.75	100.00	92.77	0.03
	BN-all2all	83.95	2.72	91.59	57.39	92.95	75.21	89.22	2.05
	Trojan	83.77	5.24	93.63	99.98	92.81	100.00	93.72	0.00
	Blend-Strip	85.36	99.93	94.19	100.00	94.21	99.98	93.59	0.00
CIFAR-10	Blend-Kitty	85.03	99.99	94.31	100.00	93.32	100.00	91.82	0.00
	SIG	85.14	99.02	94.37	99.93	94.37	99.71	90.07	0.00
	CL	85.79	10.76	94.58	98.87	94.32	99.87	90.46	6.40
	Avg	84.65	45.75	93.43	93.73	93.53	96.40	91.66	1.21
	BN-all2one	54.48	10.41	67.62	100.00	69.08	100.00	68.43	0.12
CIFAR-100	Trojan	56.17	12.76	71.01	100.00	72.18	99.99	68.04	0.08
	Blend-Strip	58.01	99.91	72.47	99.99	71.29	99.99	67.63	0.00
	Blend-Kitty	57.21	99.99	73.36	99.99	72.43	100.00	67.06	0.00
	Avg	56.47	55.77	71.12	100.00	71.24	99.99	67.79	0.05

Adversarial Attacks with Reverse Adversarial Perturbation^[3]

- We encourage that not only x^{adv} itself has low loss value, but also the points in the vicinity of x^{adv} have similarly low loss values.
- We propose to minimize the maximal loss value within a local neighborhood region around the adversarial example x^{adv} .
- The maximal loss is implemented by perturbing x^{adv} to maximize the attack loss, named

Effective Backdoor Defense^[2]

Background

Poisoning-based backdoor attacks are serious threat for training deep models on data from untrustworthy sources. Given a backdoored model, the feature representations of poisoned samples with trigger are more sensitive to transformations than those of clean samples. Hence, we design a simple sensitivity metric, called feature consistency towards transformations (FCT), to distinguish poisoned samples from clean samples in the untrustworthy training set.

Reverse Adversarial Perturbation (RAP). Our final optimization problem:

$$\min_{\boldsymbol{x}^{adv}\in\mathcal{B}_{e}(\boldsymbol{x})}\mathcal{L}(\mathcal{M}^{s}(\mathcal{G}(\boldsymbol{x}^{adv}+\boldsymbol{n}^{rap});\boldsymbol{\theta}),\boldsymbol{y}_{t})$$
(1)

where

$$\boldsymbol{n}^{rap} = \underset{\|\boldsymbol{n}^{rap}\|_{\infty} \leq \epsilon_n}{\arg \max} \mathcal{L} \left(\mathcal{M}^s (\boldsymbol{x}^{adv} + \boldsymbol{n}^{rap} ; \boldsymbol{\theta}), y_t \right)$$
(2)

To solve the inner loop:

$$\boldsymbol{n}^{rap} \leftarrow \boldsymbol{n}^{rap} + \alpha_n \cdot \operatorname{sign} \left(\nabla_{\boldsymbol{n}^{rap}} \mathcal{L} \left(\mathcal{M}^s (\boldsymbol{x}^{adv} + \boldsymbol{n}^{rap} ; \boldsymbol{\theta}), y_t \right) \right)$$
(3)

To solve the outer loop:

$$\boldsymbol{x}^{adv} \leftarrow \operatorname{Clip}_{\mathcal{B}_{\epsilon}(\boldsymbol{x})} \left[\boldsymbol{x}^{adv} - \boldsymbol{\alpha} \cdot \operatorname{sign} \left(\nabla_{\boldsymbol{x}^{adv}} \mathcal{L} \left(\mathcal{M}^{s} \left(\mathcal{G} \left(\boldsymbol{x}^{adv} + \boldsymbol{n}^{rap} \right); \boldsymbol{\theta} \right), \boldsymbol{y}_{t} \right) \right) \right]$$
(4)

Experimental Evaluation

		$\textbf{ResNet-50} \Longrightarrow$		$DenseNet-121 \Longrightarrow$			
Attack	Dense-121	VGG-16	Inc-v3	Res-50	VGG-16	Inc-v3	
MTDI / +RAP / +RAP-LS	74.9 / <u>78.2</u> / 88.5	62.8 / <u>72.9</u> / 81.5	10.9 / <u>28.3</u> / 33.2	44.9 / <u>64.3</u> / 74.5	38.5 / <u>55.0</u> / 65.5	7.7 / <u>23.0</u> / 26.5	
MTDSI / +RAP / +RAP-LS	86.3 / <u>88.4</u> / 93.3	70.1 / <u>77.7</u> / 84.7	38.1 / <u>51.8</u> / 58.0	55.0 / <u>71.2</u> / 75.8	42.0 / <u>58.4</u> / 62.3	19.8 / <u>39.0</u> / 39.2	
MTDAI / +RAP / +RAP-LS	<u>91.4</u> / 89.4 / 93.6	<u>79.9</u> / 79.0 / 86.3	50.8 / $\underline{57.1}$ / 64.1	69.1 / <u>74.2</u> / 82.1	54.7 / <u>63.1</u> / 69.3	32.0 / <u>43.5</u> / 49.3	
Attacl		$VGG-16 \Longrightarrow$		Inc-v3⇒			
ALLACK	D FO	D 101	T O		D 101	TICC 10	

Attack	Res-50 Dense-121		Inc-v3	Res-50	Dense-121	VGG-16
MTDI / +RAP / +RAP-LS	111.8 / <u>16.7</u> / 22.9	13.7 / <u>19.4</u> / 27.4	0.7 / <u>3.4</u> / 4.6	1.8 / 8.3 / <u>7.5</u>	4.1 / 14.8 / <u>13.4</u>	2.9 / <u>8.0</u> / 9.8
MTDSI / +RAP / +RAP-LS	31.0 / <u>35.3</u> / 38.7	41.7 / <u>44.4</u> / 49.6	9.6 / 15.2 / <u>13.7</u>	5.6 / 11.9 / <u>10.7</u>	10.4 / 21.2 / <u>20.9</u>	4.2 / 8.9 / <u>8.6</u>
MTDAI / +RAP / +RAP-LS	36.2 / <u>39.0</u> / 43.1	<u>48.0</u> / 45.1 / 55.2	11.6 / <u>17.1</u> / 17.6	9.6 / <u>13.6</u> / 16.7	17.9 / <u>27.5</u> / 31.6	8.4 / <u>12.0</u> / 12.1

Reference:

[1] Yuezun Li, Yiming Li, Baoyuan Wu (corresponding author), Longkang Li, Ran He, and Siwei Lyu (corresponding author). Invisible Backdoor Attack with Sample-Specific Triggers. In ICCV 2021.

[2] Weixin Chen, Baoyuan Wu (corresponding author), and Haoqian Wang. Effective Backdoor Defense by Exploiting Sensitivity of Poisoned Samples. In NeurIPS 2022 (Spotlight).

[3] Zeyu Qin (equal contribution), Yanbo Fan (equal contribution), Yi Liu, Li Shen, Yong Zhang, Jue Wang, and Baoyuan Wu (corresponding author). Boosting the Transferability of Adversarial Attacks with Reverse Adversarial Perturbation. In NeurIPS 2022.

香港中文大學(深圳) The Chinese University of Hong Kong, Shenzhen

雷达信号处理国家级重点实验室 National Key Laboratory of Radar Signal Processing

综合业务网理论及关键技术国家重点实验室

State Key Laboratory of Integrated Services Networks

广东省大数据计算基础理论与方法重点实验室

GuangDong Key Laboratory of **Big Data Computing**