NIIIS 2022

Metric Nearness Made Practical

Wenye Li ${ }^{1,2}$ ，Fangchen Yu^{1} ，Zichen Ma^{1}

${ }^{1}$ The Chinese University of Hong Kong，Shenzhen
${ }^{2}$ Shenzhen Research Institute of Big Data

Introduction

Consider the Metric Nearness Problem［1］：

$$
\min _{X \in \mathbb{R}^{n \times n}}\left\|X-D^{o}\right\|_{F}^{2}
$$

subject to $\left\{\begin{array}{l}x_{i i}=0 \\ x_{i j}=x_{j i} \geq 0 \quad, \quad \forall 1 \leq i, j, k \leq n \\ \boldsymbol{x}_{\boldsymbol{i j}} \leq \boldsymbol{x}_{\boldsymbol{i k}}+\boldsymbol{x}_{\boldsymbol{k j}}\end{array}\right.$
－Metric nearness model seeks a valid metric X that is nearest to the observed non－metric D^{o} ．
－In practice，existing approaches still face non－trivial challenges from a large number of $\boldsymbol{O}\left(\boldsymbol{n}^{3}\right)$ constraints．

Proposed Method

We designed a two－stage approach to solve it．

Stage－I．Embedding Calibration

The approach first shrinks the scope of distance metrics to isometrically embeddable matrices．
－Schoenberg＇s result on isometrical embedding provides a sufficient and necessary condition［2］．
Theorem 1．$D=\left\{d_{i j}\right\} \in \mathbb{R}^{n \times n}$ is an embeddable matrix iff the matrix $E=\exp (-\gamma D)$ is PSD for $\gamma>0$ ．
－We seek an embeddable matrix by solving．

$$
E^{*}=\min _{E \in \mathbb{R}^{n} n}\left\|E-E^{o}\right\|_{F}^{2}
$$

subject to $\left\{\begin{array}{l}e_{i i}=1,0 \leq e_{i j}=e_{j i} \leq 1, \forall 1 \leq i, j \leq n \\ E \geqslant 0 \text {（PSD）}\end{array}\right.$
Dykstra＇s projection algorithm［3］is conducted on two closed convex sets，i．e．， \mathcal{S} and \mathcal{T} ，defined by
$\mathcal{S}=\left\{E \in \mathbb{R}^{n \times n} \mid E \succcurlyeq 0\right\}$ ，
$\mathcal{T}=\left\{E \in \mathbb{R}^{n \times n} \mid e_{i i}=1,0 \leq e_{i j}=e_{j i} \leq 1, \forall i, j\right\}$
where running for a few iterations is efficient to obtain a good estimate $X^{0}=-\log \left(E^{*}\right) / \gamma$ ．

Stage－II．HLWB Projection

Then the approach starts with the initial solution in Stage－ I and refines it iteratively to the optimum．
－The region defined by the triangle inequalities is the intersection of all $C_{i j k}$＇s，denoted by

$$
C_{i j k}=\left\{X \in \mathbb{R}^{n \times n} \mid x_{i j} \leq x_{i k}+x_{k j}\right\} .
$$

－We use a HLWB projection［4］to sequentially project a given point D^{o} onto the mulitple closed convex sets． Theorem 2．Let $\mathcal{C}_{1}, \cdots, \mathcal{C}_{m}$ be a family of closed convex subsets such that $\mathcal{M}_{n}=\bigcap_{i=1}^{m} \mathcal{C}_{i} \neq \emptyset$ ．Set

$$
\left\{\begin{array}{l}
Y^{t+1}=\frac{1}{t+2} D^{o}+\frac{t+1}{t+2} X^{t} \\
X^{t+1}=\mathrm{P}_{\mathcal{C}_{1}} \cdots \mathrm{P}_{\mathrm{e}_{(}}\left(Y^{t}\right)
\end{array}, \text { for }=0,1, \cdots\right.
$$

$$
\text { Then } X^{t} \rightarrow \mathrm{P}_{\mathcal{M}_{n}}\left(D^{o}\right), Y^{t} \rightarrow \mathrm{P}_{\mathcal{M}_{n}}\left(D^{o}\right) \text { as } t \rightarrow \infty \text {. }
$$

Algorithm

The algorithm has $O\left(n^{3}\right)$ time \＆$O\left(n^{2}\right)$ space complexity．

Algorithm 1：The Proposed HLWB Algorithm

Evaluation

Result－I．Problem Size

Table 1．The largest problem size n solved within 12 hours．

CPLEX	MOSEK	TRF［1］	PAF［5］	HLWB
<300	<300	$<2,000$	$\sim 3,000$	$>10,000$

Result－II．Nearness and Optimality

Nearness is measured by $N M S E=\left\|X^{*}-D^{o}\right\|_{F}^{2} /\left\|D^{o}\right\|_{F}^{2}$ ． Constraint Satisfaction Ratio $C S R=\#$ satisfied／\＃total．

Figure 1．NMSE／CSR vs Iterations on Noisy Distance． $D^{o}=\left\{d_{i j}^{o}\right\}=\left\{\max \left\{0, d_{i j}^{*}+\zeta \cdot \operatorname{mean}\left(D^{*}\right) \cdot \mathrm{N}(0,1)\right\}\right\}$.

Result－III．Updates and Running Time

Figure 2．Updates／Time vs Iterations on Noisy Distance．
［1］Brickell，J．，etc．2008．The metric nearness problem．SIAM Journal on Matrix Analysis and Applications，30（1）：375－396．
［2］Schoenberg，I．J．1938．Metric spaces and positive definite functions． Transactions of the American Mathematical Society，44（3）：522－536．
［3］Boyle，J．P．，etc．1986．A method for finding projections onto the intersection of convex sets in Hilbert spaces．In Advances in Order Restricted Statistical Inference，28－47．Springer．
［4］Halpern，B．1967．Fixed points of nonexpanding maps．Bulletin of the American Mathematical Society，73（6）：957－961．
［5］Sonthalia，R．，etc．2020．Project and forget：Solving large－scale metric constrained problems．arXiv preprint arXiv：2005．03853．

