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Introduction (Anisotropic Hyperelastic Model)

Arterial wall can be modeled by a nearly incompressible, anisotropic and
hyperelastic equation that allows large deformation.

▶Energy Functional
ψ = ψiso(C) + ψvol(C) + ψti(C,M(i)), (1)

where C is Cauthy-Green tensor, M(i) are the
structural tensors.

▶Momentum Equation
divP = −f , (2)

where P = FS,S = ∂ψ
∂C.

▶Principal Invariants
I1 := tr C, I2 := tr [cofC], I3 := det C,

J(i)
4 := tr[CM(i)], J(i)

5 := tr[C2M(i)].

with ψiso = ψiso(Ii), ψvol = ψvol(I3) and
ψti = ψti(Ii, J

(i)
j ).

Figure 1: Cross-section of artery

Figure 2: Collagen fibre reinforcement

The performance of Inexact Newton methods (IN) and the linear solvers degrade
in the cases of

Large Deformation; Near Incompressibility; High Anisotropy.
We propose some robust linearly iterative solvers and a nonlinearly
preconditioned Newton’s method.

Optimal Multilevel Linear Preconditioners

Denote the nonlinear system discretized from (2) by
F (u∗) = 0

where F : Rn 7→ Rn.
▶A serial of Jacobian systems need to solve approximately

∥F (u(k)) + F ′(u(k))p(k)∥ ≤ ηk∥F (u(k))∥, (3)
where u(k) is a approximate solution, and ηk ∈ [0, 1) is a scalar that determines
how accurately the Jacobian system needs to be solved.

▶The multilevel preconditioners based on domain decomposition are given in [1]
as

B = Ih
HA−1

H (Ih
H)

T +
J∑

i=1

ιiA−1
i ιTi . (4)

where AH is the nonconforming discretization (P2-P0) for linear elastic operator;
i.e.
⟨AHwH, vH⟩ := 2µ̃(ϵ(wH), ϵ(vH)) + λ̃(PH

0 divwH,PH
0 divvH) ∀wH, vH ∈ WH,

(5)
▶The uniform convergence is proved for the case of linear elasticity:

Theorem (Condition number estimate)
The condition number of BF ′ satisfies

cond(BF ′) ≤ c(1 + Nc)
H2

δ2
,

where c is independent to mesh size and material parameters.

IN Method with Nonlinear Elimination Preconditioner

▶High nonlinearity ≈ High residual

F (u0 + δu) = F (u0) + F ′(u0)(δu) +
1
2

F ′′(u0)(δu, δu) +O(∥δu∥3).

▶Find "bad" dofs set Sb from S = {1, · · · , n}, according to the residual
Vb = {v | v = (v1, · · · , vn)

T ∈ Rn, vk = 0, if k ̸∈ Sb}.
▶Given an approximation u, NE finds correction by solving ub ∈ Vb such that

Fb(ub) := RbF (ub + u) = 0.

Algorithm (IN-NE)
Step 1.Compute the next approximate solution u(k+1) by solving

F (u) = 0
with one step of IN iteration using u(k) as the initial guess.

Step 2. (Nonlinearity checking)
2.1 If ∥F (u(k+1))∥ < ϱ1∥F (u(k))∥, go to Step 1.
2.2Finding “bad" d.o.f. by

Sb := {j ∈ S
∣∣ |Fj(u(k+1))| > ϱ2∥F (u(k+1))∥∞}.

And extend Sb to Sδb by adding the neighbor d.o.f..
2.3 If #(Sδb) < ϱ3n, go to Step 3. Otherwise, go to Step 1.

Step 3.Compute the correction uδb ∈ Vb by solving the subproblem
approximately

F δ
b(u

δ
b) := Rδ

bF (uδb + u(k+1)) = 0,
with an initial guess uδb = 0.Update u(k+1)← uδb + u(k+1). Go to Step 1.

Test Examples

We consider the polyconvex energy functional
ψA = ψisochoric + ψvolumetric + ψti

:= c1

(
I1

I1/3
3

− 3

)
+ ϵ1

(
Iϵ2
3 +

1
Iϵ2
3
− 2

)
+

2∑
i=1

α1

〈
I1J(i)

4 − J(i)
5 − 2

〉α2
.

(6)

Based on the parameter sets of the model ψA in Table. 1, we propose three test
examples to investigate the performance of our algorithms for the case of large
deformation, near incompressibility and high anisotropy.

Set Layer c1 ϵ1 ϵ2(-) α1 α2 Purpose
L – 1.e3 1.e3 1.0 0.0 0.0 Deformations by different pulls

C1 – 1.e3 1.e3 1.0 0.0 0.0
Different penalties for compressiblityC2 – 1.e3 1.e4 1.0 0.0 0.0

C3 – 1.e3 1.e5 1.0 0.0 0.0

A1
Adv. 7.5 100.0 20.0 1.5e10 20.0

Anisotropic arterial walls

Med. 17.5 100.0 50.0 5.0e5 7.0

A2
Adv. 6.6 23.9 10 1503.0 6.3
Med. 17.5 499.8 2.4 30001.9 5.1

A3
Adv. 7.8 70.0 8.5 1503.0 6.3
Med. 9.2 360.0 9.0 30001.9 5.1

Table 1: Model parameter sets of ψA.

Numerical Results

▶The simulation results for the three examples are depicted as follows

Figure 3: Deformations by different pulls.
Figure 4: von Mises stress

▶The convergence history
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(a)Example L
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(b)Example C
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(c)Example A
Figure 5: Convergence history of IN and IN-NE

▶The parameter-sensitivity tests
ϱ2 = .9, ϱ3 = .3
ϱ1 .9 .95 .98

Global Newton iterations 23 23 24
Total Newton iterations of NE 40 25 23

ρ1 = .95, ρ3 = .3
ϱ2 .8 .9 .95

Global Newton iterations 24 23 25
Total Newton iterations of NE 31 25 23

ρ1 = .95, ρ2 = .9
ϱ3 .1 .2 .3

Global Newton iterations 54 23 23
Total Newton iterations of NE 15 25 25

Table 2: Number of iterations of IN-NE with respect to
different pre-chosen parameters.

Set Poisson’s Ratio
C1 0.125
C2 0.452
C3 0.495

Table 3: Poisson’s ratio of
materials C1, C2 and C3.

mesh \ δ 2 3 4
m0 15 23 23
m1 58 36 26

Table 4: Mesh refinement,
Set A2, ρ0 = .9, ρ1 = .9,
ρ2 = .25.
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